Skip to content Skip to sidebar Skip to footer

How to Read Arellano-bond Estimator Output Stata

Gild STATA

Dynamic panel-data (DPD) analysis


Stata has suite of tools for dynamic console-data analysis:

  • xtabond implements the Arellano and Bond estimator, which uses moment weather condition in which lags of the dependent variable and offset differences of the exogenous variables are instruments for the showtime-differenced equation.
  • xtdpdsys implements the Arellano and Bover/Blundell and Bond system estimator, which uses the xtabond moment conditions and moment conditions in which lagged first differences of the dependent variable are instruments for the level equation.
  • xtdpd, for advanced users, is a more flexible alternative that tin fit models with low-order moving-average correlations in the idiosyncratic errors and predetermined variables with a more complicated structure than allowed with xtabond and xtdpdsys.
  • Postestimation tools allow you to exam for serial correlation in the first-differenced residuals and test the validity of the overidentifying restrictions.

Example

Edifice on the work of Layard and Nickell (1986), Arellano and Bond (1991) fit a dynamic model of labor need to an unbalanced panel of firms located in the United Kingdom. Get-go nosotros model employment on wages, uppercase stock, industry output, year dummies, and a time tendency, including one lag of employment and two lags of wages and upper-case letter stock. Nosotros will use the i-pace Arellano–Bond reckoner and request their robust VCE:

          . webuse abdata  . xtabond north Fifty(0/2).(w k) yr1980-yr1984 year, vce(robust)          Arellano–Bond dynamic panel-data estimation     Number of obs     =        611 Group variable: id                              Number of groups  =        140 Fourth dimension variable: yr                                                 Obs per group:                                                               min =          four                                                               avg =   4.364286                                                               max =          half dozen  Number of instruments =     twoscore                  Wald chi2(13)     =    1318.68                                                 Prob > chi2       =     0.0000 Ane-pace results                                      (Std. err. adapted for clustering on id)          
Robust
n Coefficient std. err. z P>|z| [95% conf. interval]
northward
L1. .6286618 .1161942 v.41 0.000 .4009254 .8563983
west
--. -.5104249 .1904292 -ii.68 0.007 -.8836592 -.1371906
L1. .2891446 .140946 2.05 0.040 .0128954 .5653937
L2. -.0443653 .0768135 -0.58 0.564 -.194917 .1061865
1000
--. .3556923 .0603274 v.90 0.000 .2374528 .4739318
L1. -.0457102 .0699732 -0.65 0.514 -.1828552 .0914348
L2. -.0619721 .0328589 -1.89 0.059 -.1263743 .0024301
yr1980 -.0282422 .0166363 -1.70 0.090 -.0608488 .0043643
yr1981 -.0694052 .028961 -2.40 0.017 -.1261677 -.0126426
yr1982 -.0523678 .0423433 -1.24 0.216 -.1353591 .0306235
yr1983 -.0256599 .0533747 -0.48 0.631 -.1302723 .0789525
yr1984 -.0093229 .0696241 -0.thirteen 0.893 -.1457837 .1271379
year .0019575 .0119481 0.16 0.870 -.0214604 .0253754
_cons -2.543221 23.97919 -0.11 0.916 -49.54158 44.45514
Instruments for differenced equation GMM-type: Fifty(2/.).n Standard: D.w LD.w L2D.west D.k LD.k L2D.m D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year Instruments for level equation Standard: _cons

Because nosotros included one lag of northward in our regression model, xtabond used lags 2 and dorsum every bit instruments. Differences of the exogenous variables also serve as instruments.

Here we refit our model, using xtdpdsys instead so that we can obtain the Arellano–Bover/Blundell–Bond estimates:

          . xtdpdsys due north L(0/2).(west thou) yr1980-yr1984 year, vce(robust)          Arrangement dynamic panel-information estimation            Number of obs     =        751 Group variable: id                              Number of groups  =        140 Time variable: year                                                 Obs per group:                                                               min =          5                                                               avg =   5.364286                                                               max =          7  Number of instruments =     47                  Wald chi2(13)     =    2579.96                                                 Prob > chi2       =     0.0000 One-step results          
Robust
n Coefficient std. err. z P>|z| [95% conf. interval]
n
L1. .8221535 .093387 eight.eighty 0.000 .6391184 1.005189
w
--. -.5427935 .1881721 -ii.88 0.004 -.911604 -.1739831
L1. .3703602 .1656364 2.24 0.025 .0457189 .6950015
L2. -.0726314 .0907148 -0.fourscore 0.423 -.2504292 .1051664
k
--. .3638069 .0657524 v.53 0.000 .2349346 .4926792
L1. -.1222996 .0701521 -1.74 0.081 -.2597951 .015196
L2. -.0901355 .0344142 -2.62 0.009 -.1575862 -.0226849
yr1980 -.0308622 .016946 -1.82 0.069 -.0640757 .0023512
yr1981 -.0718417 .0293223 -ii.45 0.014 -.1293123 -.014371
yr1982 -.0384806 .0373631 -1.03 0.303 -.1117111 .0347498
yr1983 -.0121768 .0498519 -0.24 0.807 -.1098847 .0855311
yr1984 -.0050903 .0655011 -0.08 0.938 -.1334701 .1232895
year .0058631 .0119867 0.49 0.625 -.0176304 .0293566
_cons -10.59198 23.92087 -0.44 0.658 -57.47602 36.29207
Instruments for differenced equation GMM-blazon: 50(2/.).n Standard: D.w LD.w L2D.westward D.k LD.thou L2D.k D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year Instruments for level equation GMM-type: LD.n Standard: _cons

Comparing the footers of the 2 commands' output illustrates the cardinal divergence between the 2 estimators. xtdpdsys included the lagged differences of northward every bit instruments in the level equation; xtabond did not.

The moment conditions of these GMM estimators are valid only if at that place is no series correlation in the idiosyncratic errors. Because the outset departure of white noise is necessarily autocorrelated, we need but concern ourselves with 2d and higher autocorrelation. Nosotros can employ estat abond to exam for autocorrelation:

          . estat abond, artests(4)          Dynamic panel-data estimation                   Number of obs     =        751 Group variable: id                              Number of groups  =        140 Time variable: year                                                 Obs per group:                                                               min =          5                                                               avg =   five.364286                                                               max =          7  Number of instruments =     47                  Wald chi2(13)     =    2579.96                                                 Prob > chi2       =     0.0000 Ane-step results                                      (Std. err. adjusted for clustering on id)          
Robust
north Coefficient std. err. z P>|z| [95% conf. interval]
due north
L1. .8221535 .093387 8.80 0.000 .6391184 1.005189
w
--. -.5427935 .1881721 -ii.88 0.004 -.911604 -.1739831
L1. .3703602 .1656364 2.24 0.025 .0457189 .6950015
L2. -.0726314 .0907148 -0.80 0.423 -.2504292 .1051664
k
--. .3638069 .0657524 five.53 0.000 .2349346 .4926792
L1. -.1222996 .0701521 -i.74 0.081 -.2597951 .015196
L2. -.0901355 .0344142 -2.62 0.009 -.1575862 -.0226849
yr1980 -.0308622 .016946 -i.82 0.069 -.0640757 .0023512
yr1981 -.0718417 .0293223 -2.45 0.014 -.1293123 -.014371
yr1982 -.0384806 .0373631 -1.03 0.303 -.1117111 .0347498
yr1983 -.0121768 .0498519 -0.24 0.807 -.1098847 .0855311
yr1984 -.0050903 .0655011 -0.08 0.938 -.1334701 .1232895
year .0058631 .0119867 0.49 0.625 -.0176304 .0293566
_cons -x.59198 23.92087 -0.44 0.658 -57.47602 36.29207
Instruments for differenced equation GMM-type: L(ii/.).n Standard: D.west LD.due west L2D.w D.k LD.1000 L2D.1000 D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year Instruments for level equation GMM-blazon: LD.n Standard: _cons Arellano–Bond test for zero autocorrelation in beginning-differenced errors H0: No autocorrelation
Society z Prob > z
i -4.6414 0.0000
2 -1.0572 0.2904
3 -.19492 0.8455
4 .04472 0.9643

References

Arellano, Yard., and S. Bond. 1991.
Some tests of specification for panel information: Monte Carlo bear witness and an awarding to employment equations. The Review of Econometric Studies 58: 277–297.
Layard, R., and Due south. J. Nickell. 1986.
Unemployment in Britain. Economica 53: 5121–5169.

Explore more time-series features in Stata.

rogerthemaged1950.blogspot.com

Source: https://www.stata.com/features/overview/dynamic-panel-data/

Publicar un comentario for "How to Read Arellano-bond Estimator Output Stata"